2021上海財(cái)經(jīng)大學(xué)601數(shù)學(xué)分析研究生考試大綱

發(fā)布時(shí)間:2020-11-26 編輯:考研派小莉 推薦訪(fǎng)問(wèn):
2021上海財(cái)經(jīng)大學(xué)601數(shù)學(xué)分析研究生考試大綱

2021上海財(cái)經(jīng)大學(xué)601數(shù)學(xué)分析研究生考試大綱內(nèi)容如下,更多考研資訊請(qǐng)關(guān)注我們網(wǎng)站的更新!敬請(qǐng)收藏本站,或下載我們的考研派APP和考研派微信公眾號(hào)(里面有非常多的免費(fèi)考研資源可以領(lǐng)取,有各種考研問(wèn)題,也可直接加我們網(wǎng)站上的研究生學(xué)姐微信,全程免費(fèi)答疑,助各位考研一臂之力,爭(zhēng)取早日考上理想中的研究生院校。)

2021上海財(cái)經(jīng)大學(xué)601數(shù)學(xué)分析研究生考試大綱 正文

    601數(shù)學(xué)分析
    《數(shù)學(xué)分析》考試是為招收數(shù)學(xué)各專(zhuān)業(yè)學(xué)生而設(shè)置的具有選拔功能的業(yè)務(wù)水平考試。它的主要目的是測(cè)試考生對(duì)數(shù)學(xué)分析各項(xiàng)內(nèi)容的掌握程度和應(yīng)用相關(guān)知識(shí)解決問(wèn)題的能力。
    一、考試基本要求
    要求考生比較系統(tǒng)地理解數(shù)學(xué)分析的基本概念和基本理論,掌握數(shù)學(xué)分析的基本思想和方法。要求考生具有抽象思維能力、邏輯推理能力、運(yùn)算能力和綜合運(yùn)用所學(xué)的知識(shí)分析問(wèn)題和解決問(wèn)題的能力。
    二、考試方法和考試時(shí)間
    數(shù)學(xué)分析考試采用閉卷筆試形式,試卷滿(mǎn)分為150分,考試時(shí)間為180分鐘。三、考試主要內(nèi)容和考試要求
    (一)極限和函數(shù)的連續(xù)性
    1.考試主要內(nèi)容
    映射與函數(shù);數(shù)列的極限、函數(shù)的極限;連續(xù)函數(shù)、函數(shù)的連續(xù)性和一致連續(xù)性;R
    中的點(diǎn)集、實(shí)數(shù)系的連續(xù)性;函數(shù)和連續(xù)函數(shù)的各種性質(zhì)。
    2.考試要求
    (1)透徹理解和掌握數(shù)列極限,函數(shù)極限的概念。掌握并能運(yùn)用ε-N,ε-X,ε-δ語(yǔ)言處理極限問(wèn)題。熟練掌握數(shù)列極限與函數(shù)極限的概念;理解無(wú)窮小量的概念及基本性質(zhì)。
    (2)熟練掌握極限的性質(zhì)及四則運(yùn)算性質(zhì),能夠熟練運(yùn)用兩面夾原理和熟練掌握兩個(gè)重要極限來(lái)處理極限問(wèn)題。。
    (3)熟練掌握實(shí)數(shù)系的基本定理:區(qū)間套定理,確界存在定理,單調(diào)有界原理,
    Bolzano-Weierstrass定理,Heine-Borel有限覆蓋定理,Cauchy收斂準(zhǔn)則;并理解相互關(guān)系。
    (4)熟練掌握函數(shù)連續(xù)性的概念及相關(guān)的不連續(xù)點(diǎn)類(lèi)型。能夠運(yùn)用函數(shù)連續(xù)的四則運(yùn)算與復(fù)合運(yùn)算性質(zhì)以及相對(duì)應(yīng)的;并理解兩者的相互關(guān)系。函數(shù)連續(xù)性的定義(點(diǎn),區(qū)間),連續(xù)函數(shù)的局部性質(zhì);理解單側(cè)連續(xù)的概念。
    (5)熟練掌握閉區(qū)間上連續(xù)函數(shù)的性質(zhì):有界性定理、最值定理、介值定理;了解Contor
    定理。
    (二)一元函數(shù)微分學(xué)
    1.考試主要內(nèi)容
    微分的概念、導(dǎo)數(shù)的概念、微分和導(dǎo)數(shù)的意義;求導(dǎo)運(yùn)算;微分運(yùn)算;微分中值定理;洛必達(dá)法則、泰勒展式;導(dǎo)數(shù)的應(yīng)用。
    2.考試要求
    (1)理解導(dǎo)數(shù)和微分的概念及其相互關(guān)系,理解導(dǎo)數(shù)的幾何意義和物理意義,理解函數(shù)可導(dǎo)性與連續(xù)性之間的關(guān)系。
    (2)熟練掌握函數(shù)導(dǎo)數(shù)與微分的運(yùn)算法則,包括高階導(dǎo)數(shù)的運(yùn)算法則、復(fù)合函數(shù)求導(dǎo)法則,會(huì)求分段函數(shù)的導(dǎo)數(shù)。理解單側(cè)導(dǎo)數(shù)、可導(dǎo)性與連續(xù)性的關(guān)系,掌握導(dǎo)數(shù)的幾何應(yīng)用,微分在近似計(jì)算中的應(yīng)用。
    (3)熟練掌握Rolle中值定理,Lagrange中值定理和Cauchy中值定理以及Taylor展式。
    (4)能夠用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,最值和凸凹性。
    (5)掌握用洛必達(dá)法則求不定式極限的方法。
    (三)一元函數(shù)積分學(xué)
    1.考試主要內(nèi)容
    定積分的概念、性質(zhì)和微積分基本定理;不定積分和定積分的計(jì)算;定積分的應(yīng)用;廣義積分的概念和廣義積分收斂的判別法。
    2.考試要求
    (1)理解不定積分的概念。掌握不定積分的基本公式,換元積分法和分部積分法,會(huì)求初等函數(shù)、有理函數(shù)和三角有理函數(shù)的積分。
    (2)掌握定積分的概念,包括Darboux和,上、下積分及可積條件與可積函數(shù)類(lèi)。
    (3)掌握定積分的性質(zhì),熟練掌握微積分基本定理,定積分的換元積分法和分部積分法以及積分中值定理。
    (4)能用定積分表達(dá)和計(jì)算如下幾何量與物理量:平面圖形的面積,平面曲線(xiàn)的弧長(zhǎng),旋轉(zhuǎn)體的體積與側(cè)面積,平行截面面積已知的立體體積,變力做功和物體的質(zhì)量與質(zhì)心。
    (5)理解廣義積分的概念。熟練掌握判斷廣義積分收斂的比較判別法,Abel判別法和Dirichlet判別法;積分第二中值定理。掌握廣義積分的收斂、發(fā)散、絕對(duì)收斂與條件收斂等概念;.能用收斂性判別法判斷某些反常積分的收斂性。
    (四)無(wú)窮級(jí)數(shù)
    1.考試主要內(nèi)容
    數(shù)項(xiàng)級(jí)數(shù)的概念、數(shù)項(xiàng)級(jí)數(shù)斂散的判別法;級(jí)數(shù)的絕對(duì)收斂和條件收斂;函數(shù)項(xiàng)級(jí)數(shù)的收斂和一致收斂及其性質(zhì)、收斂性的判別;冪級(jí)數(shù)及其性質(zhì)、泰勒級(jí)數(shù)和泰勒展開(kāi)。
    2.考試要求
    (1)理解數(shù)項(xiàng)級(jí)數(shù)斂散性的概念,掌握數(shù)項(xiàng)級(jí)數(shù)的基本性質(zhì)。
    (2)熟練掌握正項(xiàng)級(jí)數(shù)斂散的必要條件,比較判別法,Cauchy判別法,D‘Alembert判別法與積分判別法。
    (3)熟練掌握任意項(xiàng)級(jí)數(shù)絕對(duì)收斂與條件收斂的概念及其相互關(guān)系。熟練掌握交錯(cuò)級(jí)數(shù)的Leibnitz判別法。掌握絕對(duì)收斂級(jí)數(shù)的性質(zhì)。
    (4)熟練掌握函數(shù)項(xiàng)級(jí)數(shù)一致收斂性的概念以及判斷一致收斂性的Weierstrass判別法。Abel判別法、Cauchy判別法、Dirichlet判別法和Dini判別法。熟練掌握函數(shù)項(xiàng)級(jí)數(shù)一致收斂性的性質(zhì)及其應(yīng)用。
    (5)掌握冪級(jí)數(shù)及其收斂半徑的概念,包括Cauchy-Hadamard定理和Abel第一定理。
    (6)熟練掌握冪級(jí)數(shù)的性質(zhì)。能夠?qū)⒑瘮?shù)展開(kāi)為冪級(jí)數(shù)。理解余項(xiàng)公式。
    (7)掌握三角函數(shù)系的正交性與函數(shù)的傅里葉(Fourier)級(jí)數(shù)的概念與性質(zhì);能正確地?cái)⑹龈道锶~級(jí)數(shù)收斂性判別法;能將一些函數(shù)展開(kāi)成傅里葉級(jí)數(shù)并簡(jiǎn)單的應(yīng)用。
    (五)多元函數(shù)微分學(xué)與積分學(xué)
    1.考試主要內(nèi)容
    多元函數(shù)的極限與連續(xù)、全微分和偏導(dǎo)數(shù)的概念、重積分的概念及其性質(zhì)、重積分的計(jì)算;曲線(xiàn)積分和曲面積分;反常積分的定義和判別。
    2.考試要求
    (1)理解平面及Rn空間點(diǎn)集的基本概念,多元函數(shù)的極限,累次極限,連續(xù)性概念;了解閉集套定理,有限覆蓋定理。掌握多元函數(shù)極限、連續(xù)與一致連續(xù)概念及其性質(zhì),偏導(dǎo)數(shù)、方向?qū)?shù)、高階偏導(dǎo)數(shù)和全微分等概念以及和連續(xù)關(guān)系,會(huì)求多元函數(shù)的極限、偏導(dǎo)數(shù)方向?qū)?shù)、高階偏導(dǎo)數(shù)和全微分。
    (2)掌握隱函數(shù)存在定理。會(huì)求隱函數(shù)的導(dǎo)數(shù);會(huì)求曲線(xiàn)的切線(xiàn)方程,法平面方程,曲面的切平面方程和法線(xiàn)方程
    (3)會(huì)求多元函數(shù)極值和無(wú)條件極值,了解偏導(dǎo)數(shù)的幾何應(yīng)用。
    (4)了解可求面積、體積概念。熟練掌握重積分(包括廣義的)、兩類(lèi)曲線(xiàn)積分和兩類(lèi)曲面積分的概念與計(jì)算,會(huì)求圖形的面積,體積及物體的質(zhì)量與重心。
    (5)熟練掌握Gauss公式、Green公式和Stoks公式及其應(yīng)用。
    (6)形式微分。
    (六)含參變量積分
    1.考試主要內(nèi)容
    含參變量積分的概念、性質(zhì)。
    2.考試要求
    (1)熟練掌握含參變量常義積分的概念與性質(zhì)以及應(yīng)用。
    (2)熟練掌握變上限積分。
    (3)Euler積分。
上海財(cái)經(jīng)大學(xué)

添加上海財(cái)經(jīng)大學(xué)學(xué)姐微信,或微信搜索公眾號(hào)“考研派小站”,關(guān)注[考研派小站]微信公眾號(hào),在考研派小站微信號(hào)輸入[上海財(cái)經(jīng)大學(xué)考研分?jǐn)?shù)線(xiàn)、上海財(cái)經(jīng)大學(xué)報(bào)錄比、上海財(cái)經(jīng)大學(xué)考研群、上海財(cái)經(jīng)大學(xué)學(xué)姐微信、上海財(cái)經(jīng)大學(xué)考研真題、上海財(cái)經(jīng)大學(xué)專(zhuān)業(yè)目錄、上海財(cái)經(jīng)大學(xué)排名、上海財(cái)經(jīng)大學(xué)保研、上海財(cái)經(jīng)大學(xué)公眾號(hào)、上海財(cái)經(jīng)大學(xué)研究生招生)]即可在手機(jī)上查看相對(duì)應(yīng)上海財(cái)經(jīng)大學(xué)考研信息或資源。

上海財(cái)經(jīng)大學(xué)考研公眾號(hào) 考研派小站公眾號(hào)

本文來(lái)源:http://www.zhongzhouzhikong.com/shanghaicaijingdaxue/cankaoshu_381578.html

推薦閱讀