福州大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院導(dǎo)師:邵志強(qiáng)

發(fā)布時(shí)間:2021-10-29 編輯:考研派小莉 推薦訪問(wèn):
福州大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院導(dǎo)師:邵志強(qiáng)

福州大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院導(dǎo)師:邵志強(qiáng)內(nèi)容如下,更多考研資訊請(qǐng)關(guān)注我們網(wǎng)站的更新!敬請(qǐng)收藏本站,或下載我們的考研派APP和考研派微信公眾號(hào)(里面有非常多的免費(fèi)考研資源可以領(lǐng)取,有各種考研問(wèn)題,也可直接加我們網(wǎng)站上的研究生學(xué)姐微信,全程免費(fèi)答疑,助各位考研一臂之力,爭(zhēng)取早日考上理想中的研究生院校。)

福州大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院導(dǎo)師:邵志強(qiáng) 正文


  姓名:邵志強(qiáng)  
  性別:男  
  職稱(chēng):教授 
  學(xué)院:數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院
  研究方向:矩陣?yán)碚摷捌鋺?yīng)用、模糊數(shù)學(xué)

  個(gè)人簡(jiǎn)介:

  邵志強(qiáng), 男,1963年生, 研究生學(xué)歷, 碩士學(xué)位,教授, 碩士生導(dǎo)師。1981年7月畢業(yè)于浙江師范學(xué)院金華分校(現(xiàn)浙江師范大學(xué))數(shù)學(xué)系, 1991年7月畢業(yè)于上海復(fù)旦大學(xué)數(shù)學(xué)研究所, 獲碩士學(xué)位。1991年8月至今在福州大學(xué)數(shù)學(xué)系從事教學(xué)和科學(xué)研究工作, 科研上主要從事非線性偏微分方程理論與應(yīng)用的研究,已經(jīng)分別在《Nonlinear Analysis-Theory, Methods & Applications》、《[美國(guó)] J. Math. Anal. Appl.》、《Z. angew. Math. Phys.》、《Math. Models Methods Appl. Sci.》、《Journal of Elasticity》、《[德國(guó)]Math. Nachr. 》、《Nonlinear Analysis: Real World Applications》、《Acta Mathematica Scientia》等國(guó)際權(quán)威刊物和國(guó)內(nèi)核心刊物上發(fā)表學(xué)術(shù)論文30余篇,其中SCI收錄20篇, EI收錄11篇。

  主要論著:

  (1) A note on the asymptotic behavior of global classical solutions of diagonalizable quasilinear hyperbolic systems, Nonlinear Analysis: Theory, Methods & Applications, 73 (2010), pp. 600-613. (SCI, EI)

  (2) Global structure stability of Riemann solutions for linearly degenerate hyperbolic conservation laws under small BV perturbations of the initial data, Nonlinear Analysis: Real World Applications ,11(2010), pp. 3791-3808, 2010,doi:10.1016/j.nonrwa.2010.02.009.(SCI, EI)

  (3) Asymptotic behavior of global classical solutions to the mixed initial-boundary value problem for quasilinear hyperbolic systems with small BV Data, Journal of Elasticity, 98 (2010), pp. 25-64. (SCI, EI)

  (4) Global weakly discontinuous solutions to the mixed initial-boundary value problem for quasilinear hyperbolic systems, Mathematical Models and Methods in Applied Sciences, 19 (2009) , pp. 1099-1138. (SCI, EI)

  (5) The mixed initial-boundary value problem for quasilinear hyperbolic systems with linearly degenerate characteristics, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009) , pp. 1350-1368. (SCI, EI)

  (6) Global existence of classical solutions to the mixed initial-boundary value problem for quasilinear hyperbolic systems of diagonal form with large BV data, Journal of Mathematical Analysis and Applications, 360 (2009), pp. 398-411. (SCI)

  (7) Global structure stability of Riemann solutions for general hyperbolic systems of conservation laws in the presence of a boundary, Nonlinear Analysis: Theory, Methods & Applications, 69 (2008) , pp. 2651-2676. (SCI:357MA)

  (8) Blow-up of solutions to the initial–boundary value problem for quasilinear hyperbolic systems of conservation laws, Nonlinear Analysis: Theory, Methods & Applications, 68 (2008), pp.716-740. SCI:266MI, EI:075010971793)

  (9) Global weakly discontinuous solutions for hyperbolic conservation laws in the presence of a boundary, Journal of Mathematical analysis and applications, 345 (2008), pp. 223-242. (SCI:319HB)

  (10) Shock reflection for a system of hyperbolic balance laws, Journal of Mathematical analysis and applications, 343 (2008), pp. 1131-1153. (SCI:303LG)

  (11) Global solutions with shock waves to the generalized Riemann problem for a class of quasilinear hyperbolic systems of balance laws II, Mathematische Nachrichten, 281(2008), pp. 879–902. (SCI:314LV)

  (12) Global structure instability of Riemann solutions for general quasilinear hyperbolic systems of conservation laws in the presence of a boundary, Journal of Mathematical analysis and applications, 330 (2007), pp. 511-540. (SCI:175LT).

  (13) Global solution to the generalized Riemann problem in the presence of a boundary and contact discontinuities, Journal of Elasticity, 87 (2007), pp. 277-310.(SCI:179GI, EI:072610668737)

  科研項(xiàng)目:

  (1)2009-2011, 半導(dǎo)體器件電子流動(dòng)的數(shù)學(xué)分析與非線性偏微分方程, 福建省自然科學(xué)基金(主持).

  (2)2007-2009, 半導(dǎo)體器件電子流動(dòng)的數(shù)學(xué)分析, 福建省教育廳科技項(xiàng)目(主持).

  (3)2004-2007, 非線性偏微分方程奇性解的存在性等若干問(wèn)題的研究, 福州大學(xué)科技發(fā)展基金(主持).

  (4)2000-2002, 應(yīng)用偏微分方程, 福建省教育廳科技項(xiàng)目(主持).
 

以上老師的信息來(lái)源于學(xué)校網(wǎng)站,如有更新或錯(cuò)誤,請(qǐng)聯(lián)系我們進(jìn)行更新或刪除,聯(lián)系方式

添加福州大學(xué)學(xué)姐微信,或微信搜索公眾號(hào)“考研派小站”,關(guān)注[考研派小站]微信公眾號(hào),在考研派小站微信號(hào)輸入[福州大學(xué)考研分?jǐn)?shù)線、福州大學(xué)報(bào)錄比、福州大學(xué)考研群、福州大學(xué)學(xué)姐微信、福州大學(xué)考研真題、福州大學(xué)專(zhuān)業(yè)目錄、福州大學(xué)排名、福州大學(xué)保研、福州大學(xué)公眾號(hào)、福州大學(xué)研究生招生)]即可在手機(jī)上查看相對(duì)應(yīng)福州大學(xué)考研信息或資源。

福州大學(xué)考研公眾號(hào) 考研派小站公眾號(hào)
福州大學(xué)

本文來(lái)源:http://www.zhongzhouzhikong.com/fuzhoudaxue/daoshi_507646.html

推薦閱讀